Universality classes for general random matrix flows
نویسندگان
چکیده
Nous considérons des processus à valeurs matricielles décrits comme solutions d’équations différentielles stochastiques d’une forme très générale. étudions la famille empiriques mesures construits partir propres correspondantes. montrons que indexée par taille de matrice est tendue sous hypothèses faibles sur les coefficients l’EDS initiale. caractérisons distributions limites sous-suites équation intégrale. utilisons ce résultat pour étudier certaines classes d’universalité flots matrices aléatoires. Ceci généralise le classique lié au mouvement brownien Dyson et aux systèmes particules carré Bessel. nouveaux phénomènes l’existence distribution généralisée Marchenko–Pastur droite réelle. introduisons aussi une classe reliée matriciels browniens géométriques Jacobi. Enfin, nous étudions, conditions, convergence du associées matrices, vers loi diffusion libre.
منابع مشابه
Universality in Random Matrix Theory
which is the Central Limit Theorem. In principle, all the random variables X1, X2, · · · , XN can be of order 1, hence SN ∼ 1 as well, but the probability of having such a rare event is incredibly small. We can even estimate the bound on the probability for the rare event from the large deviation principle. A similar phenomenon happens when we form a large matrix from i.i.d. random variables an...
متن کاملBreakdown of Universality in Random Matrix Models
We calculate smoothed correlators for a large random matrix model with a potential containing products of two traces trW1(M) ·trW2(M) in addition to a single trace trV (M). Connected correlation function of density eigenvalues receives corrections besides the universal part derived by Brézin and Zee and it is no longer universal in a strong sense. On leave of absence from National Laboratory fo...
متن کاملBeyond universality in random matrix theory
In order to have a better understanding of finite random matrices with non-Gaussian entries, we study the 1/N expansion of local eigenvalue statistics in both the bulk and at the hard edge of the spectrum of random matrices. This gives valuable information about the smallest singular value not seen in universality laws. In particular, we show the dependence on the fourth moment (or the kurtosis...
متن کاملUniversality in complex networks: random matrix analysis.
We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world, and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Second, we show an analogy between the onset of small-world behavior, quantified by the s...
متن کاملSpectral Universality for Real Chiral Random Matrix Ensembles
We investigate the universality of microscopic eigenvalue correlations for Random Matrix Theories with the global symmetries of the QCD partition function. In this article we analyze the case of real valued chiral Random Matrix Theories (β = 1) by relating the kernel of the correlations functions for β = 1 to the kernel of chiral Random Matrix Theories with complex matrix elements (β = 2), whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1175